| 
    | 
    
    | Re: Скупой платит дважды, тупой платит трижды, лох платит постоянно! – Или, снова о  Шкатулках   ID:31829   ответ на 31791 | Сб, 11 августа 2007 08:55 [#] |  |  
	| 
	
	| korovin |  |  (иконки IM)
	Форумы CasinoGames 
 |  |  
    | Какое отношение это имеет к задаче которую я решал и решение которой (мое) ты пытаешся опровергнуть этой темой? 
 
 Если тема посвещена решению этой задачи с помощью предложеных тобой профилей, то зачем было приплетать сюда меня и мое строго математическое решение? Почему ты не смеешся над решением Громазеки, ведь оно тоже неоптимально с твоей точки зрения?| Цитата: |  | Предлагается такая вот игра. Есть 2 шкатулки. Известно, что в одной в 2 раза больше денег чем в другой. Предлагают выбрать одну из них. Открывают. Там допустим 100$. Далее мы можем изменить свой выбор, отказавшись от 100$. Что делать и почему? | 
 
 
 С эти никогда не соглашусь. МО игрока напрямую определяется  учредителем. Если он будет всегда класть 1 и 2 цента, МО игрока не будет выше 2-х центов. Это самый верный способ максимально "ухудшить" результат игрока.| Цитата: |  | По большому счёту, решениЯ Грамазеки (всегда_стоять и всегда_менять) одновременно верны при равномерных парных выплатах. Грамотный Учредитель в состоянии чуть-чуть ухудшить его результат за счёт "сгущения" (снизу или сверху) парных_сумм. Оптимальной стратегией будет "шаг вперёд, два шага назад": один раз из трёх открывать вторую шкатулку, два раза - стоять!! | 
 
 Нет никаких профилей, нет никаких вероятностей распределения пар, нет <font color="red">абсолютно</font> никакой доп. информации. Предложи универсальную стратегию выбора для ДАННОЙ задачи, которая будет лучше или не хуже моей, потом вместе посмеемся.
 
 Напомню суть: я даю игроку шанс получить вместо МО=1.5Х МО=2Х. Это шанс нельзя ни измерить ни оценить, так как у нас нет никаких входных данных, но этот шанс существует. Любая стратегия произвольного выбора не дает игроку МО больше 1.5Х. Рассматривая только примитивные стратегии мы приходим к 1.5Х и считаем что это предел. Мои идеи лежат за пределами этой простой модели восприятия исходной задачи, отсюда непонимание тех, кто считает что в этой игре не может быть "умной" стратегии как не может быть ее на рулетке. Отрицая это на уровне подсознания они автоматически считают что я не прав. Точно так же мы сразу включаем отрицание при разговорах о том как победить идеальную рулетку. Я их прекрасно понимаю, но не представляю как донести свои мысли через их отрицание на корню. Виталий, теперь, оказавшись в твоей роли - взломщика рулетки, я наконец понял как тяжело тебе общатся с нами.
 |  |  |  |